Мы используем файлы cookie для обеспечения работоспособности сервиса, улучшения навигации и маркетинговых активностей Yolonce. Нажимая "Согласен", вы соглашаетесь с нашей Политикой конфиденциальности

Основы Apache Spark

  Сложность

Пока неизвестно

  Длительность

26 ак.ч.

  Формат

онлайн

  Документ по выпуску

удостоверение о повышении квалификации государственного образца

Стоимость курса
45 000

Подробнее о курсе

Apache Spark – один из самых распространенных инструментов, обеспечивающих гибкое масштабирование обработки данных в самых разных объемах. Если у вас есть кластер Spark, то достаточно один раз написать логику обработки данных на SQL с минимальным использованием кода на Python, Java или Scala и запустить приложение, независимо от того, хранится ли у вас 100 килобайт на одном узле или 100 терабайт на 100 узлах. Неизбежные сбои на узлах и сбои сетевой инфраструктуры в таких распределенных системах можно устранять с помощью того же Spark, перезапуская при необходимости неработающие процессы. Такие широкие возможности управления выполнением распределенных запросов в реляционных СУБД доступны либо при наличии большого бюджета (тогда как Apache Spark доступен бесплатно), либо при условии существенных трудозатрат на разработку. Для эффективного использования всех преимуществ Spark недостаточно просто развернуть кластер и написать SQL запросы. Разработчики должны понимать, что происходит во внутренней структуре, в противном случае неизбежны неприятные сюрпризы с производительностью системы. Этот тренинг ориентирован прежде всего на разработчиков и аналитиков данных, которые только начинают знакомство с фреймворком Spark, но не ограничивается базовыми понятиями. Будут рассмотрены различные способы оптимизации Spark не только в случае SQL-подобных запросов для табличных данных, но и для других типов данных, например, текстов, а также в случае взаимодействия с внешними системами, например, Cassandra. В данной версии курса для практических упражнений используется язык Python. Это удобно для аналитиков данных, поскольку существенная часть упражнений выполняется в тетрадях Jupyter.

Документ после выпуска

удостоверение о повышении квалификации государственного образца

Автор курса

Оценка и обучение ИТ-специалистов по ключевым направлениям разработки программного обеспечения. Курсы от экспертов-практиков по языкам программирования, системному и бизнес-анализу, архитектуре ПО, ручному и автоматизированному тестированию ПО, Big Data и машинному обучению, управлению проектами и Agile. Действует скидка 10% на обучение физических лиц.

Программа курса

  1. Концепции и архитектура Spark (теория – 2 ч., практика – 1 ч.)

Map/Reduce и Spark в Hadoop. Примеры Spark в Lambda-архитектуре Кластеры для распределенной обработки данных Как запустить Spark Исполнители, задания, задачи в Spark

  2. Программирование с помощью RDD: трансформации и действия (теория – 2 ч., практика – 2 ч.)

В чем разница между SparkSession и SparkContext Как создавать и распараллеливать RDD Как трансформировать RDD Как анализировать и управлять обработкой RDD (план и DAG) Как сохранять и хранить RDD в HDFS Как группировать и соединять RDD

  3. Программирование с помощью DataFrame (теория – 2 ч., практика – 2 ч.)

В чем разница между RDD и DataFrame Как создавать и распараллеливать DataFrame Как анализировать и управлять выполнением DataFrame (план и DAG) Как сохранять DataFrame в HDFS

  4. Загрузка данных с внешних хранилищ и во внешние хранилища (теория – 1 ч., практика – 2 ч.)

Как читать/писать данные с файлового хранилища (HDFS, S3, FTP, локальной файловой системы) Какой формат данных выбрать Как распараллеливать чтение/запись в JDBC Как создать DataFrame из MPP (Cassandra, Vertica, Greenplum) Как работать с Kafka

  5. Написание логики с использованием Spark DSL (теория – 1 ч., практика – 1 ч.)

Как считать строки Как обрабатывать математические агрегации Как группировать строки Как правильное соединять DataFrames

  6. Написание логики с использованием Spark SQL (теория – 1 ч., практика – 1 ч.)

Как и зачем переключаться на Spark SQL Как работать с таблицей EXTERNAL Как работать с таблицей MANAGED

  7. Использование функций Window и UDF (теория – 1 ч., практика – 1 ч.)

Какие оконные функции существуют и как их использовать в Spark Когда не следует использовать оконные функции Что такое UDF, UDAF и как их использовать Как оптимизировать UDFs в PySpark

  8. Типы Spark (теория – 1 ч., практика – 1 ч.)

Логические: как добавить фильтр Численные: как подсчитать сумму, произведение, статистику Строковый: как использовать регулярные выражения Комплексные: как работать со структурами, массивами Как работать с данными

  9. Примеры оптимизации Spark (теория – 1 ч., практика – 1 ч.)

Недостаточно памяти Маленькие файлы в HDFS Асимметричные данные Медленные соединения Трансляция больших таблиц Совместное использование ресурсов Новые механизмы оптимизации: AQE и DPP

  10.Запуск Spark в Airflow (теория – 1 ч., демонстрация – 1 ч.)

Оркестраторы Устройство Airflow Встроенные операторы Airflow SparkSubmitOperator

Оставьте отзыв

Напишите ваш коментарий, не менее 30 символов

Нажимая кнопку, вы даете согласие на обработку персональных данных

обновлено: 24.11.2024

Похожие курсы

Моделирование в ArchiMate

Моделирование в ArchiMate

Основы Cassandra

Основы Cassandra

Аналитик данных

Аналитик данных

Организация и геоанализ цифровых данных

Организация и геоанализ цифровых данных

ЛЭТИ
 онлайн
 40 часов
  Перейти к курсу
SQLite для аналитики

SQLite для аналитики

Основы работы в Tableau

Основы работы в Tableau

Docs as Code: Пишем тексты как код

Docs as Code: Пишем тексты как код

Визуализация данных и основы работы в Tableau

Визуализация данных и основы работы в Tableau

Оставьте заявку

Наши консультанты ответят на все вопросы
И помогут в выборе

Комментарий ...

Нажимая кнопку, вы даете согласие на обработку персональных данных